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Summary: Stereocontrolled and industrially feasible synthesis of a new antibiotic la and re- 
lated derivatives, which is characterized by using all the carbon atoms of the penixllin 
skeleton, is described. 

In our previous synthesis 
2a 

of an optically active 7a-methoxy-I-,oxacephem derivative la, 

carbon 2 and the attached two methyls of penicillins are removed eventually and a new three- 

carbon unit is introduced for building up carbons 2, 3, and 3' of la. - In development of this 

clinically important antibiotic 
2b 

having unique and superior antibacterial activity, we have 

been urged to improve this synthesis which is not suitable for industrial production, though 

essentially stereocontrolled and practical on laboratory scales. We now report an industrially 

feasible synthesis of la and related derivatives which is characterized by utilizing all the - 

carbon atoms of the penicillin skeleton for constructing the 1-oxacephem skeleton with con- 

trolling the stereochemistry. The synthetic route consists of allylic functionalization of 

azetidinone-epioxazoline 2 to allylic alcohol&, its intramolecular stereospecific cyclization 

to 7a-benzoylamino-3-methylene-1-oxacepham 17, and its transformation to the desired compounds 1. 

After all attempts were made unsuccessfully to obtain 5 directly by allylic oxidation of 2 

prepared easily from 6-epipenicillin aulfoxide 2 (PPh3, toluene/(CR2C1)2, reflux; 8O%),3 we 

turned our attention to allylic halogenation. Reaction of 2 with N-bromoauccinimlde (catalytic 

azobiaiaobutyronitrile, CC14, reflux) which has been well employed for allylic bromination in 
5 

the 8-lactam chemistry4 gave allylic bromide 2 in only 14% yield accompanied by an iaomeric 

mixture of conjugated compounds 5 (38%) and dlbromide 1 (l5%).6 This first difficulty was 

solved by the finding that chlorine7 (AcOEt, 20-30 "C) smoothly reacted with 2 to give 

azetidinone chloride 8 as a major product, which on subsequent base treatment (aqueous NaHC03, 

20-30 "C) was transformed to the desired allylic chloride 23 In 75% yield6 from 3. The by- 

products isolated6 in this process were iaomeric mixtures (each in ~5% yield) of conjugated 

compounds 2, dichlorides ll, and 8-lactonea 12. - This smooth allylic chlorination can be 

explained by assuming the ene-type reaction as illustrated in A which is supported by formation 

of the chloromethyl-deuterated product 2 from substrate 2 deuterated at olefinic methylene (C4)8 

and by a large negative entropy of activation (AS' = -52 eu) observed in a preliminary kinetic 

study. 

The chloride 2 thus obtained was found to be poorly reactive and attempts to convert it 

directly into alcohol 4 failed. - The first successful conversion of 2 into 4' was made in 58% 

overall yield6 by a modification of Evans' three-step process lo (PhSNa, PhSH, Me2CO-MeOH, 35 *C; 
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m-chloroperbenzoic acid, CH2C12, -10 OC; PPh9, MeOH-C6H6, reflux) via 13 and 2. In search f;; 

more efficient processes, 2 was transformed (NaI, Me2C0, 25 OC, ~100%) to reactive iodide 2, 

which without purification was converted into 5 by hydrolysis (AgClOA, CaCO,,, aqueous Me2C0, 

25 "C) or by nitrate formation (AgNOS, Me CO, 
12 

CH2C12, 0 "C, '~100%) in 74 or 85% yield, 
62 

25 "C) to 16 followed by reduction (Zn, AcOH, 

respectively. Our attention was then focused to 

replace the silver salts by inexpensive reagents. We found that the hydrolysis of 15 to 5 - 

(90X6) was effected with Cu20 in Me2SO-H20 at 50-60 'C and the nitrate formation to g (88%) 

was successful with excess NaNO., and methyl ptoluenesulfonate (Me2S0, 55 'C, 50 mm). In these 

new processes, Me2S0 is essential for effecting the conversions, probably forming a more re- 

active alkoxysulfonium intermediate. 
13 

The Cu20 in the former process acts as the HI scavenger 

and as the iodide-activating agent. In the latter process, the methyl ptoluenesulfonate 

reacts with NaI, giving Me1 which is removed by evacuation to shift the iodide-nitrate 



equilibrium. 

Intramolecular 

and in a completely 

hv, CH2C12, -20 "C) 

etherification of 4 (catalytic BF3*Et20, AcOEt, 25 "C) proceeded smoothly 

stereospecific manner to give exomethylene 17 -14 (90%). Chlorination (C12, 

to dichloride 2 and subsequent elimination (1,5-diazabicyclo[4.3.O]non-5- 
.r .* 

ene, -2O'C) gave 3-chloromethyl-1-oxa-3-cephem 2" (86%). Methoxylationlb (t-BuOCl, LiGMe, - 

CH2C12-MeOH, -30 'C; AcOH, -30 'C; aqueous Na2S203, 10 "C) to _11? 
17 

followed by substitution 
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(sodium 1-methyl-l+tetrazole-5-thiolate, 

methoxy-l-oxacephem lc l8 (90X)6 

catalytic z-Bu4NBr, CH2C12-H20, 25 "C) gave 7a- 

- The side-chain cleavage (PC15, pyridine, CH2C12, 25 'C; MeOH, 

0 oc; lIt2NH, -15 "C) proceeded with little epimerixation at C-7 
2a 

to give the 1-oxacephem 

nucleus g2'lg (90%). 

Acylation of Id followed by deprotection and salt formation as reported from our labora- - 

tories' afford the new antibiotic la -. Apparently, modifications at positions 3 and 7 starting 

from compounds 11, 19, &, and Id give a variety of 7a-methoxy-1-oxacephem antibiotics L, - 

which will be the subjects of future publications. 

It should be noted that highly crystalline compounds 16 19 and Id can be isolated by -9 -3 - 

crystallization of crude reaction products to make chromatographic separation unnecessary in 

the preparation of & and that the present synthetic route can be started from other penicillin 

derivatives having a variety of the side chains and the ester protecting groups, the selection 

being the subject of the process research. In conclusion, this synthetic route provides a 

stereocontrolled, straightforward, and industrially feasible synthesis of the new antibiotic la - 

starting from penicillins. 
20 
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